315 research outputs found

    Male remating in Drosophila ananassae: evidence for interstrain variation for remating time and shorter duration of copulation in second mating

    Get PDF
    ABSTRACT—In Drosophila ananassae, male remating was studied using ten mass culture stocks which were initiated from flies collected from different geographic localities. Male remating occurs at a high fre-quency and varies within narrow limits (84–96 percent) in different strains. Interestingly, male remating time (in min) varies from 7.41 (Bhutan) to 21.59 (PAT) in different strains and the variation is highly significant. Further, the results also show that males copulate for shorter duration during second mating. This is the first report in the genus Drosophila which provides evidence for interstrain variations for male remating time as well as for shorter duration of copulation during second mating as compared to first mating in D. ananassae

    Female remating in Drosophila ananassae: effect of density on female remating frequency

    Get PDF
    Drosophila ananassae, a cosmopolitan and domestic species, is largely cir-cumtropicalin distribution and belongs to the ananassae species complex of the ananassae subgroup of the melanogaster species group. In the present study, experiments were conducted to investigate the effect of density on fe-male remating frequency by employing different wild-type and mutant strains of D. ananassae. Two experimental designs, i.e., 2-h daily observation and continuous confinement, were used. The results show that there is significant dependence of remating frequency on density in all strains tested under both experimental designs except in a wild-type strain (Bhutan), which shows no dependence of remating frequency on density under 2-h daily observation de-sign. This finding provides evidence that density may increase the frequency of female remating in D. ananassae

    Female remating in Drosophila ananassae: bidirectional selection for remating speed

    Get PDF
    In Drosophila ananassae, artificial selection was carried out for fast and slow remating speed for 10 generations. Response to selection resulted in rapid divergence in remating time in each of two replicates of both fast and slow lines. There were significant differences in mean remat-ing time in females among fast, slow, and control lines. Regression coefficients for both fast and slow lines are significantly different from zero. The realized heritability over 10 genera-tions of selection is from 0.26 to 0.33 for two replicates of fast line and from 0.23 to 0.27 for two replicates of slow line. These findings suggest that female remating time in D. ananassae is under polygenic control. Remating frequency of females showed a correlated response in both fast and slow lines. At generation 10, correlated response to selection was also investigated. Mating propensity of D. ananassae of fast and slow lines was observed in an Elens-Wattiaux mating chamber. Fifteen pairs per test showed that on the average, the fast lines (11.20, 11.60) were more successful in mating than those of slow (6.40, 5.60) and control (8.00) lines. Pro-ductivity of once-mated females was measured in terms of number of progeny produced per fe-male and the results of productivity analysis indicate that females of fast lines (157.83, 130.83) produced more progeny compared with slow (72.70, 85.83) and control (109.23) lines

    Expression of Wnt Signaling Components during Xenopus Pronephros Development

    Get PDF
    The formation of the vertebrate kidney is tightly regulated and relies on multiple evolutionarily conserved inductive events. These are present in the complex metanephric kidney of higher vertebrates, but also in the more primitive pronephric kidney functional in the larval stages of amphibians and fish. Wnts have long been viewed as central in this process. Canonical β-Catenin-dependent Wnt signaling establishes kidney progenitors and non-canonical β-Catenin-independent Wnt signaling participate in the morphogenetic processes that form the highly sophisticated nephron structure. While some individual Wnt signaling components have been studied extensively in the kidney, the overall pathway has not yet been analyzed in depth.Here we report a detailed expression analysis of all Wnt ligands, receptors and several downstream Wnt effectors during pronephros development in Xenopus laevis using in situ hybridization. Out of 19 Wnt ligands, only three, Wnt4, Wnt9a and Wnt11, are specifically expressed in the pronephros. Others such as Wnt8a are present, but in a broader domain comprising adjacent tissues in addition to the kidney. The same paradigm is observed for the Wnt receptors and its downstream signaling components. Fzd1, Fzd4, Fzd6, Fzd7, Fzd8 as well as Celsr1 and Prickle1 show distinct expression domains in the pronephric kidney, whereas the non-traditional Wnt receptors, Ror2 and Ryk, as well as the majority of the effector molecules are rather ubiquitous. In addition to this spatial regulation, the timing of expression is also tightly regulated. In particular, non-canonical Wnt signaling seems to be restricted to later stages of pronephros development.Together these data suggest a complex cross talk between canonical and non-canonical Wnt signaling is required to establish a functional pronephric kidney

    Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    Get PDF
    Background: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings: Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion: Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells

    Requirement for a Uroplakin 3a-like protein in the development of zebrafish pronephric tubule epithelial cell function, morphogenesis, and polarity

    Get PDF
    Uroplakin (UP)3a is critical for urinary tract development and function; however, its role in these processes is unknown. We examined the function of the UP3a-like protein Upk3l, which was expressed at the apical surfaces of the epithelial cells that line the pronephric tubules (PTs) of the zebrafish pronephros. Embryos treated with upk3l-targeted morpholinos showed decreased pronephros function, which was attributed to defects in PT epithelial cell morphogenesis and polarization including: loss of an apical brush border and associated phospho-ERM proteins, apical redistribution of the basolateral Na+/K+-ATPase, and altered or diminished expression of the apical polarity complex proteins Prkcz (atypical protein kinase C zeta) and Pard3 (Par3). Upk3l missing its C-terminal cytoplasmic domain or containing mutations in conserved tyrosine or proline residues did not rescue, or only partially rescued the effects of Upk3l depletion. Our studies indicate that Upk3l promotes epithelial polarization and morphogenesis, likely by forming or stimulating interactions with cytoplasmic signaling or polarity proteins, and that defects in this process may underlie the pathology observed in UP3a knockout mice or patients with renal abnormalities that result from altered UP3a expression. © 2012 Mitra et al

    Anti-RSV Peptide-Loaded Liposomes for the Inhibition of Respiratory Syncytial Virus

    Get PDF
    Although respiratory syncytial virus (RSV) is one of the leading causes of acute respiratory tract infection in infants and adults, effective treatment options remain limited. To circumvent this issue, there is a novel approach, namely, the development of multifunctional liposomes for the delivery of anti RSV-peptides. While most of the peptides that are used for loading with the particulate delivery systems are the penetrating peptides, an alternative approach is the development of liposome-peptide systems, which are loaded with an RSV fusion peptide (RF-482), which has been designed to inhibit the RSV fusion and block infection. The results of this work have revealed that the liposomes themselves can serve as potential RSV inhibitors, whilst the anti-RSV-peptide with liposomes can significantly increase the RSV inhibition when compared with the anti-RSV peptide alone

    Role of PINCH and Its Partner Tumor Suppressor Rsu-1 in Regulating Liver Size and Tumorigenesis

    Get PDF
    Particularly interesting new cysteine-histidine-rich protein (PINCH) protein is part of the ternary complex known as the IPP (integrin linked kinase (ILK)-PINCH-Parvin-α) complex. PINCH itself binds to ILK and to another protein known as Rsu-1 (Ras suppressor 1). We generated PINCH 1 and PINCH 2 Double knockout mice (referred as PINCH DKO mice). PINCH2 elimination was systemic whereas PINCH1 elimination was targeted to hepatocytes. The genetically modified mice were born normal. The mice were sacrificed at different ages after birth. Soon after birth, they developed abnormal hepatic histology characterized by disorderly hepatic plates, increased proliferation of hepatocytes and biliary cells and increased deposition of extracellular matrix. After a sustained and prolonged proliferation of all epithelial components, proliferation subsided and final liver weight by the end of 30 weeks in livers with PINCH DKO deficient hepatocytes was 40% larger than the control mice. The livers of the PINCH DKO mice were also very stiff due to increased ECM deposition throughout the liver, with no observed nodularity. Mice developed liver cancer by one year. These mice regenerated normally when subjected to 70% partial hepatectomy and did not show any termination defect. Ras suppressor 1 (Rsu-1) protein, the binding partner of PINCH is frequently deleted in human liver cancers. Rsu-1 expression is dramatically decreased in PINCH DKO mouse livers. Increased expression of Rsu-1 suppressed cell proliferation and migration in HCC cell lines. These changes were brought about not by affecting activation of Ras (as its name suggests) but by suppression of Ras downstream signaling via RhoGTPase proteins. In conclusion, our studies suggest that removal of PINCH results in enlargement of liver and tumorigenesis. Decreased levels of Rsu-1, a partner for PINCH and a protein often deleted in human liver cancer, may play an important role in the development of the observed phenotype. © 2013 Donthamsetty et al
    corecore